Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4527, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500655

RESUMO

Senescence, a state of irreversible cell-cycle withdrawal, is difficult to distinguish from quiescence, a state of reversible cell-cycle withdrawal. This difficulty arises because quiescent and senescent cells are defined by overlapping biomarkers, raising the question of whether these states are truly distinct. To address this, we use single-cell time-lapse imaging to distinguish slow-cycling cells that spend long periods in quiescence from cells that never cycle after recovery from senescence-inducing treatments, followed by staining for various senescence biomarkers. We find that the staining intensity of multiple senescence biomarkers is graded rather than binary and reflects the duration of cell-cycle withdrawal, rather than senescence per se. Together, our data show that quiescent and apparent senescent cells are nearly molecularly indistinguishable from each other at a snapshot in time. This suggests that cell-cycle withdrawal itself is graded rather than binary, where the intensities of senescence biomarkers integrate the duration of past cell-cycle withdrawal.


Assuntos
Senescência Celular , Ciclo Celular , Divisão Celular , Biomarcadores
2.
Cell Rep ; 42(7): 112768, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428633

RESUMO

Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this burst in histone biosynthesis as DNA replication begins. Here, we use single-cell time-lapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the restriction point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.


Assuntos
Ciclina E , Histonas , Histonas/metabolismo , Fase S , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Nucleares/metabolismo , Retroalimentação , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclo Celular , RNA Mensageiro
3.
Sci Rep ; 13(1): 9385, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296231

RESUMO

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that regulates a suite of genes through direct binding of GR to specific DNA promoter elements. GR also interacts with RNA, but the function of this RNA-binding activity remains elusive. Current models speculate that RNA could repress the transcriptional activity of GR. To investigate the function of the GR-RNA interaction on GR's transcriptional activity, we generated cells that stably express a mutant of GR with reduced RNA binding affinity and treated the cells with the GR agonist dexamethasone. Changes in the dexamethasone-driven transcriptome were quantified using 4-thiouridine labeling of RNAs followed by high-throughput sequencing. We find that while many genes are unaffected, GR-RNA binding is repressive for specific subsets of genes in both dexamethasone-dependent and independent contexts. Genes that are dexamethasone-dependent are activated directly by chromatin-bound GR, suggesting a competition-based repression mechanism in which increasing local concentrations of RNA may compete with DNA for binding to GR at sites of transcription. Unexpectedly, genes that are dexamethasone-independent instead display a localization to specific chromosomal regions, which points to changes in chromatin accessibility or architecture. These results show that RNA binding plays a fundamental role in regulating GR function and highlights potential functions for transcription factor-RNA interactions.


Assuntos
Dexametasona , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Dexametasona/farmacologia , Dexametasona/metabolismo , Fatores de Transcrição/metabolismo , Glucocorticoides/farmacologia , Cromatina , DNA/metabolismo , RNA , Sítios de Ligação
4.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993379

RESUMO

Senescence, a state of permanent cell-cycle withdrawal, is difficult to distinguish from quiescence, a transient state of cell-cycle withdrawal. This difficulty arises because quiescent and senescent cells are defined by overlapping biomarkers, raising the question of whether quiescence and senescence are truly distinct states. To address this, we used single-cell time-lapse imaging to distinguish slow-cycling quiescent cells from bona fide senescent cells after chemotherapy treatment, followed immediately by staining for various senescence biomarkers. We found that the staining intensity of multiple senescence biomarkers is graded rather than binary and primarily reflects the duration of cell-cycle withdrawal, rather than senescence per se. Together, our data suggest that quiescence and senescence are not distinct cellular states but rather fall on a continuum of cell-cycle withdrawal, where the intensities of canonical senescence biomarkers reflect the likelihood of cell-cycle re-entry.

5.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993620

RESUMO

Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this change in histone biosynthesis as DNA replication begins. Here, we use single-cell timelapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the Restriction Point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.

6.
Cell ; 178(2): 267-269, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299197

RESUMO

Time-lapse imaging reveals a nuanced role for p21 in cancer cells challenged with chemotherapeutic drugs: cells with either high or low p21 are biased toward senescence, whereas intermediate p21 allows cells to re-enter the cell cycle after drug treatment.


Assuntos
Senescência Celular , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21
7.
Development ; 143(21): 4085-4094, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697903

RESUMO

A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Optogenética/métodos , Fosfotransferases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Luz , Sistema de Sinalização das MAP Quinases , Células PC12 , Fosforilação , Fosfotransferases/genética , Ratos , Transdução de Sinais , Transgenes , Xenopus , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...